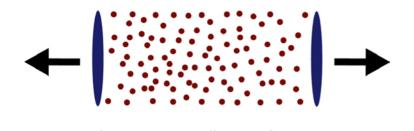
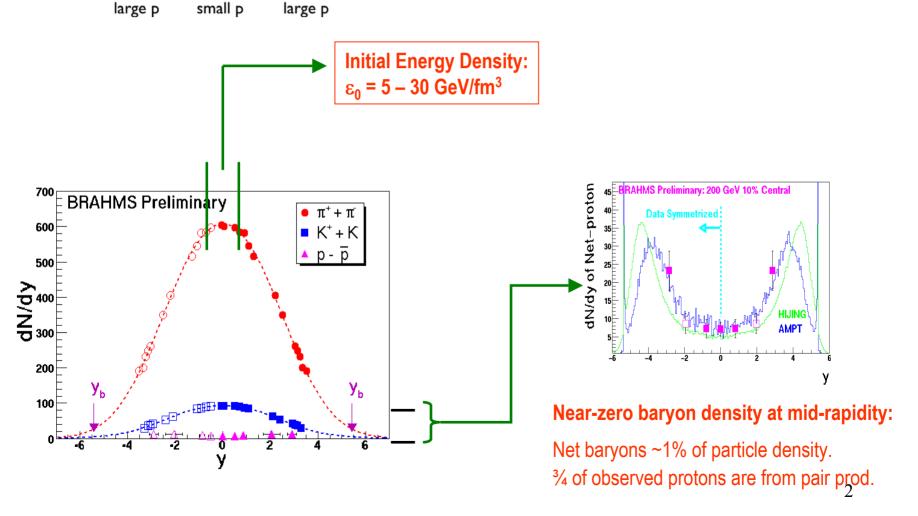

## RHIC Physics Experiments Highlights and Plans

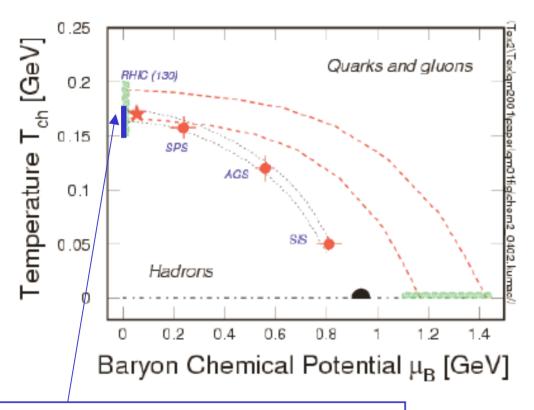
RHIC BeamEx Workshop
October 15, 2003


T. Ludlam




Brookhaven Science Associates U.S. Department of Energy








## Anatomy of a [central] RHIC collision



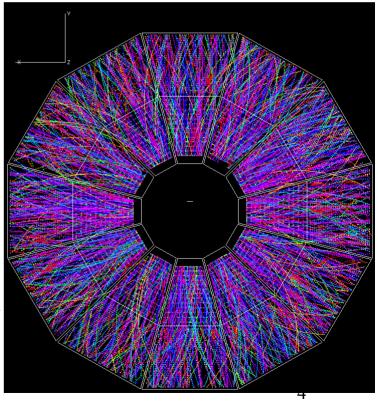
## Thermodynamics of strong matter



- It's hot enough...
- It's dense enough...
- Is it "matter" (thermal)?
- Is it "quark matter" (partons in thermal equilibrium)?

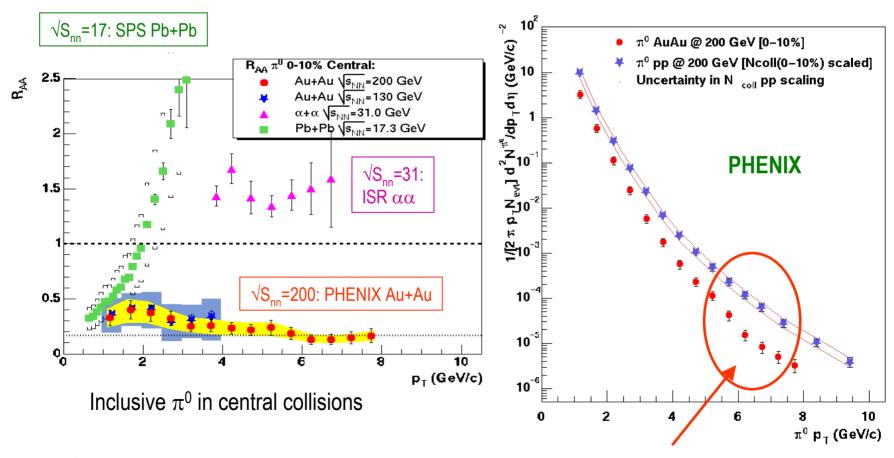
Lattice QCD calculations: T<sub>critical</sub> ~ 150 – 180 MeV

See F. Karsch, Nucl. Phys. A698, 199c

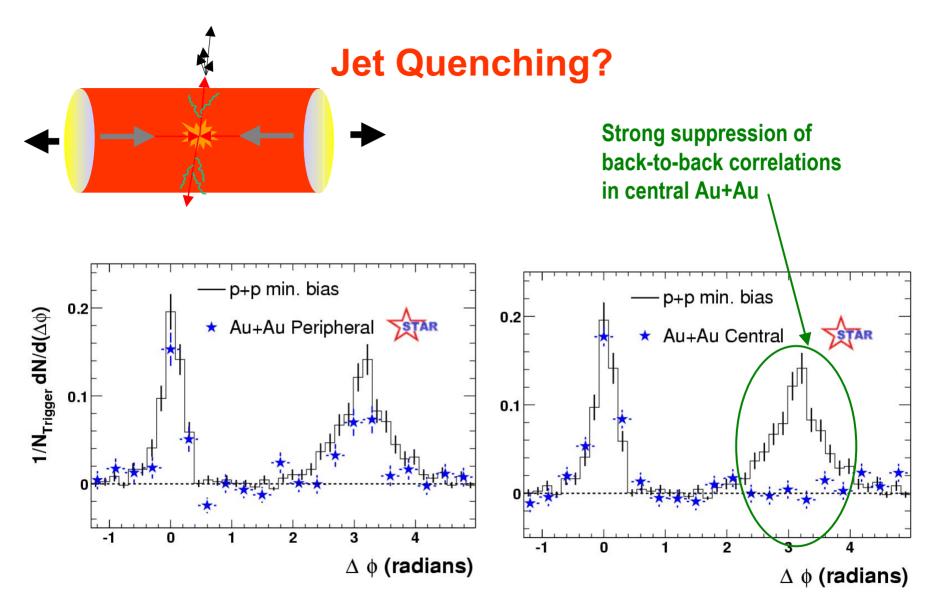

## p+p →jet+jet (STAR 200 GeV) jet parton nucleon

## **Hard Scattering at RHIC**

cross sections are high!


 $Au+Au \rightarrow ???$ 

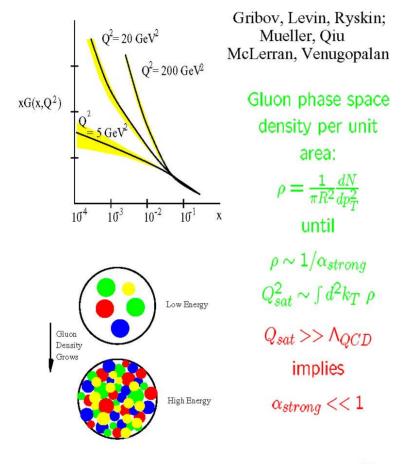
(STAR 200 GeV/nucleon)




## High P<sub>t</sub> Data

Well measured, as function of centrality, to  $p_t > 10$  GeV/c. Calibration data from p - p collisions in the same detectors.



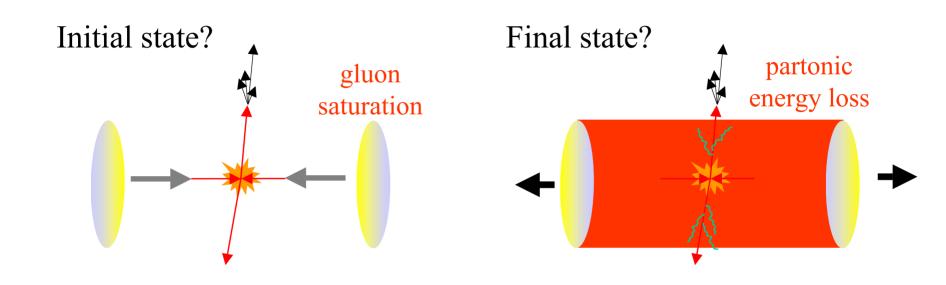

Clear suppression in central Au-Au relative to p – p at large p<sub>t</sub>

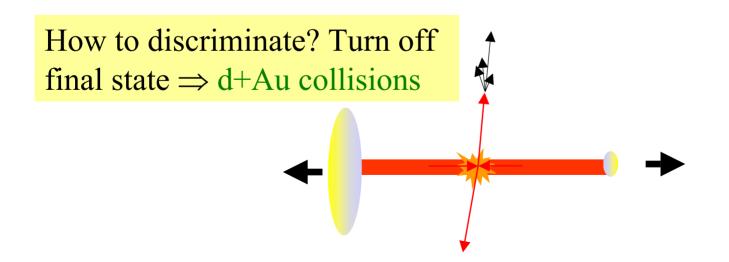


STAR data:  $\sqrt{S_{nn}} = 200 \text{ GeV}$ 

6

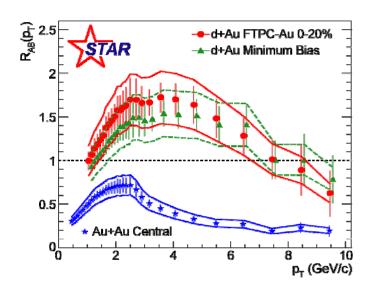
#### **Gluon Saturation and Color Glass Condensate**

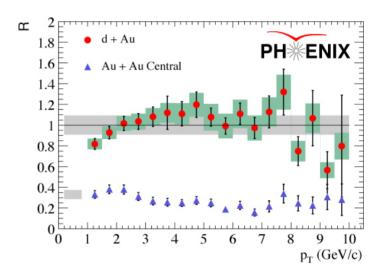




A new, emerging view of AA physics:

Not everything happens in the final state... "A lot of action is going on even before the nuclei collide" (Kharzeev, McLerran & Co.)

In this picture ... Jets are not quenched, but are *a priori* made in fewer numbers due to saturation of initial-state gluon density.

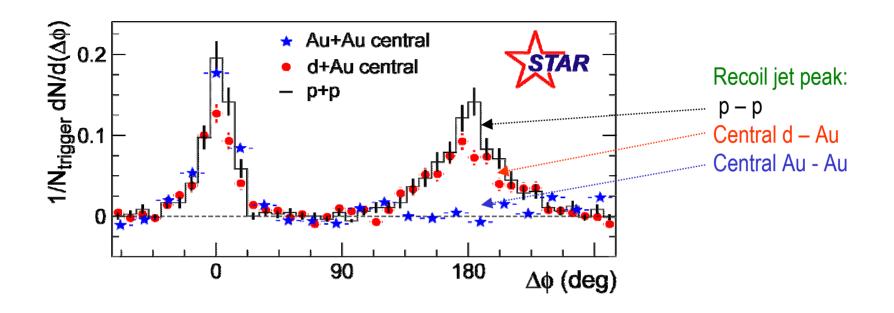

### Is suppression an initial or final state effect?






#### The verdict is in...

Deuteron-gold data at  $\sqrt{S_{nn}}$  = 200 GeV recorded Jan – Mar 2003






**STAR** charged hadrons

**PHENIX** pi-zeros

Phys. Rev. Lett. **91**, Aug. 2003 nucl-ex/0306021 (PHENIX); nucl-ex/0306025 (PHOBOS); nucl-ex/0307003 (BRAHMS); nucl-ex/0307007 (STAR)



#### June 18, 2003 press release...

The data indicate a hot, dense medium of final state particles that is characterized by strong collective interactions at very high energy densities.

## Are we seeing QGP at RHIC?

#### First question: do we have "Matter" at high energy density?

• Strong collective interaction; local kinetic equilibrium... Yes Large volume compared with mean free path?

#### Is it quarks and gluons?

- Temperature and energy density well above critical values?
- Strong collective interaction at very early times? Heavy quark flow?
- Color screening in dense phase?  $J/\psi$ ; open charm, beauty
- Opaque to jets?

#### Is there a phase transition?

- Chiral symmetry restored (shifted  $\rho$  mass)? Low-mass e-pairs
- Lattice predictions for the equation of state (latent heat)? Direct photons; energy scan; species scan

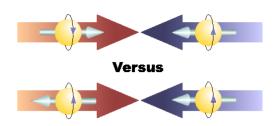
There is a lot more to learn, but at this point it appears that the answer is **Yes**.

## Further progress requires several large data samples

#### Full-energy Au-Au: hundreds of μb<sup>-1</sup>

- J/ $\psi$ , open charm, upsilon
- Identified particles at  $p_T > 5 \text{ GeV/c}$
- $v_2$  (flow) at  $p_T \approx 10$  GeV/c

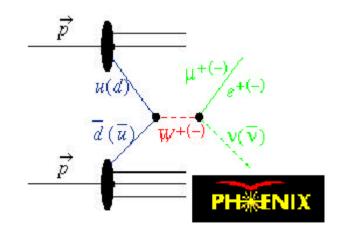
#### **Energy scan**


•  $\sqrt{s}$  = 62.4 GeV ISR p+p comparison data

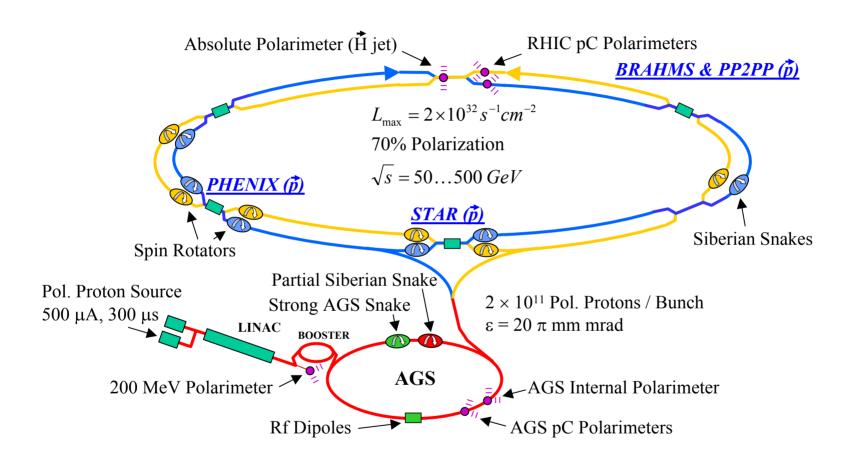
#### Species scan (system size)

Jet quenching effects ~  $A^{2/3}$  Cu:Au  $\approx 0.5$  Si:Au  $\approx 0.3$ 


Can we "turn off" the effects we attribute to hot, dense matter?


## **Spin at RHIC**




#### **High Energy collisions of polarized protons:**

- Measure the gluon contribution to the spin of the nucleon.
- Flavor decomposition of the proton's spin.





#### **Polarized Proton Collisions in RHIC**



- First colliding beams of polarized protons achieved in 2002
- First data with longitudinally polarized beams (spin rotators) in 2003
- Full Spin capability for machine and detectors will ramp up through 2005

## The Big Challenge

The "Baseline" spin physics goals require data samples of ~ 100 pb<sup>-1</sup>, with polarization >50%.

The p+p luminosity achieved in Run 3 was 0.6 pb<sup>-1</sup>/week.

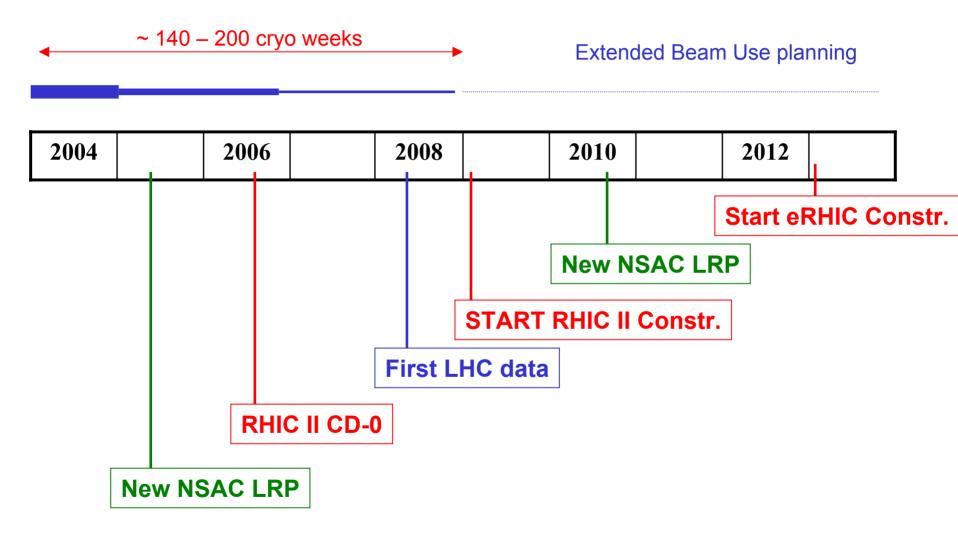
Thus...

**Heavy Ion Program** requires large data sets with many beam settings, hence lots of setup time.

**Spin Program** requires long, sustained runs to develop machine performance.

A "constant effort" operations plan over the next 5 – 10 years, with ~27 cryo weeks/year, doesn't allow us to do both.

#### Beam Use Proposals: 27 wks/yr


#### RHIC 5 Year Planning – Constant Effort Summary 9/15/03 Running Modes

| Fiscal Year | 2003                                                                 | 2004                 | 2005                        | 2006                                        | 2007                                              | 2008                    |
|-------------|----------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------------------|---------------------------------------------------|-------------------------|
| PHENIX      | d+Au 200 GeV                                                         | Au+Au 200 GeV        | Si+Si 200 GeV               | Au+Au 62.4 GeV                              | p+p 200 GeV                                       | Au+Au 200 GeV           |
|             | 16 weeks, 2.7 nb-1                                                   | 5+14 weeks, 123 ub-1 | 5+9 weeks, 2.2 nb-1         | 5+19 weeks, 45 ub-1                         | 5+19 weeks,<br>62 pb-1                            | 5+19 weeks,<br>840 ub-1 |
|             | p+p 200 GeV                                                          | p+p 200 GeV          | p+p 200 GeV                 |                                             | 60%                                               |                         |
|             | 10 weeks, 0.35 pb-1,                                                 | 5+0 weeks beam       | 5+5 weeks, 1.2 pb-1         |                                             |                                                   |                         |
|             | 27%                                                                  | development          | 50%                         |                                             |                                                   |                         |
| STAR        | d + Au 38.2M<br>5+11 weeks;                                          | AuAu 5+14            | Au or Fe 5+9<br>Energy scan | d + Au 5+9                                  | AuAu 5+5                                          | AuAu 5+10               |
|             | pp 10 weeks:<br>T 0.39 pb <sup>-</sup> 1<br>L 0.37 pb <sup>-</sup> 1 | pp 200 GeV 5 wk      | pp 200 GeV 5+5 wk           | pp 200 GeV 5+5 wk                           | pp 200 GeV 5+9wk                                  | pp 500 GeV<br>5+5wk     |
| PHOBOS      |                                                                      | AuAu@200<br>5+10(18) | pp@200 5+7(12)<br>AuAu@63   | pp@500<br>8+4                               | Possible additional running to make up shortfalls |                         |
|             |                                                                      | FeFe@200<br>5+4(6)   | 5+7(12)                     | Add. Species<br>Add. Energy                 |                                                   |                         |
| BRAHMS      |                                                                      | Au-Au 200 5+19       | Fe-Fe 200 5+5<br>pp 200 5+4 | Au-Au 63 2+6<br>Au-Au 200 2+5<br>pp 200 5+4 |                                                   |                         |

### **Alternative running scenarios: "constant effort"**

|          | Weeks per run |             | Alternative scenarios |             |             |             |  |  |
|----------|---------------|-------------|-----------------------|-------------|-------------|-------------|--|--|
|          | Cryo          | Phys wks: 2 | Cryo wks              | Phys wks: 2 | Phys wks: 3 | Phys wks: 4 |  |  |
|          | wks           | modes/run   |                       | modes/run   | modes/long  | modes/long  |  |  |
|          |               |             |                       |             | run         | run         |  |  |
| 2004     | 27            | 14          | 27                    | 14          | 14          | 14          |  |  |
| 2005     | 27            | 14          |                       |             |             |             |  |  |
| 2006     | 27            | 14          | 54                    | 41          | 36          | 31          |  |  |
| 2007     | 27            | 14          |                       |             |             |             |  |  |
| 2008     | 27            | 14          | 54                    | 41          | 36          | 31          |  |  |
| Total    |               |             |                       |             |             |             |  |  |
| phys wks |               | <b>70</b>   |                       | 96          | 86          | <b>76</b>   |  |  |

## Planning for the longer term



### RHIC Planning Group: Goal/Charge

Map the broad scientific priorities of the RHIC community onto a realistic schedule for facility operations and upgrades.

#### **Starting points...**

- Beam Use Requests and Decadal Plans
- PAC and Detector Adv. Comm. Recommendations
- Requirements for machine operation and evolution
- DOE Budget Guidance
- NSAC Long Range Planning process

**5 Year Plan** 

**10 Year Outlook** 

- Optimize ops scenarios
- Re-establish RHIC II
  - Update plans for eRHIC



Input to BNL plan for DOE Review

### **RHIC Planning Group**

Convenors: T. Kirk, T. Ludlam

| PHENIX      | STAR         | PHOBOS       | BRAHMS          |
|-------------|--------------|--------------|-----------------|
| G. Bunce    | W. Christie  | M. Baker     | F. Videbaek     |
| A. Drees    | T. Hallman   | G. Roland    | J.H. Lee        |
| E. O'Brien  | R. Majka     | P. Steinberg |                 |
| W. Zajc     | S. Vigdor    |              |                 |
|             |              |              |                 |
| Accelerator | Theory       | Computing    | PAC/DAC Invited |
| J. Alessi   | D. Kharzeev  | B. Gibbard   | R. Betts        |
| I. Ben Zvi  | W. Vogelsang | T. Throwe    | P. Jacobs       |
| W. Fischer  |              |              | SY. Lee         |
| P. Pile     |              |              | J. Nagle        |
| V. Ptitsyn  |              |              |                 |
| T. Roser    |              |              |                 |

Ex Officio: S. Aronson, D. Lowenstein, P. Paul

# Some important near-term dates vis a vis RHIC Planning

Oct. 31 "Decadal plans" due from experiments **Detector advisory committee meeting** Nov. 22 recommendations on STAR TOF and PHENIX Si **Tracker proposals**  update detector R&D plans Dec. 3-4 **Open Meeting on RHIC Planning PAC** meeting Dec. 5-6 recommendations on Decadal Plans